If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2=3456
We move all terms to the left:
20x^2-(3456)=0
a = 20; b = 0; c = -3456;
Δ = b2-4ac
Δ = 02-4·20·(-3456)
Δ = 276480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276480}=\sqrt{9216*30}=\sqrt{9216}*\sqrt{30}=96\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96\sqrt{30}}{2*20}=\frac{0-96\sqrt{30}}{40} =-\frac{96\sqrt{30}}{40} =-\frac{12\sqrt{30}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96\sqrt{30}}{2*20}=\frac{0+96\sqrt{30}}{40} =\frac{96\sqrt{30}}{40} =\frac{12\sqrt{30}}{5} $
| P=x^2-2. | | 3x+30−6x=15 | | 7(x+4=49 | | 4x-1=3(3-2x) | | 2x2-x-5°=0 | | 2h=-18 | | k=9+4 | | 3/4x+2x-3=-14x+21 | | 2.5-x=0.04 | | d=-12/3 | | 3m–6–4m+8=23 | | 22=y/5-17 | | q=-(-14) | | 28=-8y+2(y+8) | | 28x7=195 | | 2^(x-3)=6^(2x) | | f=12+-6 | | 28x7=67 | | 20x+30x=3/10 | | f-15=2 | | f−15=2 | | t=2(8) | | f+18=-1 | | 4x-9+1-9x=180 | | f-16=-6 | | 4(3x-2)-2x=2 | | 3u+4(u-6)=11 | | f=2(9) | | 11/5x-8=10 | | 11/5x=5x2 | | 1.14x-5=23 | | 5x-2x+9=6X |